Investigations of the EPR g Factors of NaCrS₂ and NaCrSe₂

Xiao-Xuan Wu^{a,b,c}, Wen-Chen Zheng^{b,c}, Qing Zhou^b, and Yang Mei^b

^a Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, P.R. China

^b Department of Material Science, Sichuan University, Chengdu 610064, P.R. China

Reprint requests to Dr. W.-C. Z; E-mail: zhengwcl@163.com

Z. Naturforsch. 60a, 369 – 372 (2005); received January 4, 2005

The EPR g factors of Cr^{3+} in $NaCrSe_2$ and $NaCrSe_2$ crystals are calculated from the high-order perturbation formulas based on the one-spin-orbit (SO)-coupling-parameter (i.e., the SO-coupling-parameter of the central $3d^n$ ion) as well as the two-SO-coupling-parameter (i.e., the SO-coupling-parameter of the $3d^n$ ion and that of ligands) models for $3d^n$ ions in cubic octahedral sites. The calculated results (in particular for $NaCrSe_2$) based on the two-SO-coupling-parameter model are closer to the observed values than those based on the one-SO-coupling-parameter model, suggesting that for calculations of the g factor of $3d^n$ ions in covalent crystals the two-SO-coupling-parameter model is preferable to the one-SO-coupling-parameter model. The reasonableness of the calculated results from the two-SO-coupling-parameter model is discussed.

Key words: Electron Paramagnetic Resonance; Crystal- and Ligand-field Theory; Spin-orbit Coupling; Cr³⁺; NaCrS₂; NaCrSe₂.

1. Introduction

When a $3d^n$ ion enters a crystal, the g factor should shift from the free-ion value g_e (≈ 2.0023) [1–3]. The change of g factor is due to the interactions of excited states with the ground state via spin-orbit (SO)coupling [1-3]. In the conventional crystal-field theory [1-5], for simplicity, only the contribution to the g factor due to the SO-coupling of central $3d^n$ ion is considered. The method is therefore called one-SOcoupling-parameter model. The model is only suitable for 3dⁿ ions in the ionic crystals, where the interaction between the SO-coupling-parameter of a 3dⁿ ion and that of a ligands via covalence effects can be neglected. However, since both the SO-couplingparameter of ligands and the covalence of 3dⁿ clusters in crystals increase with increasing atomic number of the ligand ion [6], the contribution to the g factor from the SO-coupling-parameter of ligands via the covalence effect should be taken into account. Thus, the two-SO-coupling-parameter model based on the cluster approach was developed [7-12]. In this model, the contributions to g factors from both the SO-couplingparameter of a 3dⁿ ion and that of ligands are included, and so it is suitable for a 3dⁿ ion in covalence crystals. Many studies of g factors for $3d^n$ ions in MX_6 (where $X = Cl^-$, Br^- , I^- , the VIIA group ligands) [7–9] and in ML_4 (where $L = S^{2-}$, Se^{2-} , Te^{2-} , the VIA group ligands) [11–12] have been made to analyze the relative importance of the contributions to g factors from the SO-coupling-parameter of ligands and the covalence of $3d^n$ clusters. However, for $3d^n$ ions in ML_6 , the octahedral clusters with VIA group ligand ions, fewer studies exist. Isotropic g factors of the magnetic semiconductors $NaCrS_2$ and $NaCrSe_2$ were reported [13]. Cr^{3+} ions in both crystals occupy octahedral sites, and $(CrL_6)^{9-}$ (L = S, Se) clusters are formed in these crystals [14]. They are suitable examples for the study. In this paper, we study the g factors for both crystals by means of high-order perturbation formulas based on two- and also one-SO-coupling-parameter models.

2. Calculation

According to the two-SO-coupling-parameter model [7–9], the admixture of SO-coupling-parameters between the d electrons of $3d^n$ ions and the p electrons of ligands via the covalence effect will be considered. So, the zero-order wave functions should be combined with the one-electron wave function of the molecular orbitals which are a linear combination of d orbitals $|d_{\gamma}\rangle$ of $3d^n$ ions and p orbitals $|p_{\gamma}\rangle$ of

^c International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P.R. China

ligand ions. Thus, for $3d^n$ ions in octahedral clusters, the molecular orbitals can be expressed as [7-9]

$$|\Psi_{\gamma}\rangle = N_{\gamma}^{1/2}(|\mathbf{d}_{\gamma}\rangle - \lambda_{\gamma}|\mathbf{p}_{\gamma}\rangle),$$
 (1)

in which the subscript $\gamma=t_{2g}$ or e_g stands for the irreducible representation of O_h symmetry. N_γ and λ_γ are the normalization factors and the orbital mixing coefficients, respectively. Thus, two SO-coupling-parameters ζ and ζ' , which describe, respectively, the SO-coupling between two t_{2g} terms and that between t_{2g} and e_g terms, can be written as [7-9]

$$\zeta = N_{t}(\zeta_{d}^{0} + \lambda_{t}^{2}\zeta_{p}^{0}/2),
\zeta' = N_{t}^{1/2}N_{e}^{1/2}(\zeta_{d}^{0} - \lambda_{t}\lambda_{e}\zeta_{p}^{0}/2),$$
(2)

where ζ_d^0 and ζ_p^0 are, respectively, the SO-coupling-parameters of the $3d^n$ ion and the ligand ion in the free state

By use of the molecular orbitals and Macfarlane's perturbation-loop method [4, 5], the high-order perturbation formula of the g factor based on the two-SO-coupling-parameter model for a $3d^3$ ion in octahedral clusters can be expressed as [8]

$$\begin{split} g &= 0.0023 - 8k'\zeta'/(3E_1) \\ &- 2\zeta(2k'\zeta - k\zeta' + 2g_e\zeta')/9E_1^2) \\ &+ 4(k - 2g_e)\zeta'^2/9E_3^2 - 2\zeta^2(k + g_e)/(3E_2^2) \quad (3) \\ &- 4\zeta\zeta'k'/(3E_1E_2) + 4\zeta\zeta'k'/(9E_1E_2) \\ &+ 4\zeta\zeta'k'/(3E_2E_3), \end{split}$$

where the zero-order energy denominations E_i are [4,5]

$$E_1 = \Delta = 10Dq, \quad E_2 = 15B + 5C,$$

 $E_3 = \Delta + 9B + 3C.$ (4)

The orbital reduction factors k and k' are given as

$$\begin{aligned} k &= N_{t} (1 - 2\lambda_{t} S_{dp}(t_{2g}) + \lambda_{t}^{2} / 2), \\ k' &= N_{t}^{1/2} N_{e}^{1/2} (1 - \lambda_{t} S_{dp}(t_{2g}) - \lambda_{e} S_{dp}(e_{g}) - \lambda_{t} \lambda_{e} / 2) \end{aligned}$$
(5)

[note: since $S_{\rm dp}(\gamma)$ is small, in [8–10] the terms including $S_{\rm dp}(\gamma)$ in (5) are neglected].

In the above formulas, the molecular orbital coefficients N_{γ} and λ_{γ} are estimated from the normalization relationship

$$N_{\gamma}[1 - 2\lambda_{\gamma}S_{\rm dp}(\gamma) + \lambda_{\gamma}^{2}] = 1 \tag{6}$$

and the approximate conditions [7-9]

$$\beta \approx N_{\gamma}^{2} [1 - 2\lambda_{\gamma} S_{dp}(\gamma) + \lambda_{\gamma}^{2} S_{dp}(\gamma)], \tag{7}$$

in which $\beta \approx (B/B_0 + C/C_0)/2$ is the ratio of the Racah parameters for a $3d^n$ ion in the crystal to those for the free ion. $S_{dp}(\gamma)$ is the group overlap integral. In the above formulas, if we take $\lambda_{\gamma} = 0$ and $N_{\gamma} = \beta^{1/2}$, the admixtures of the orbitals of ligands to those of $3d^n$ ions are not considered. The above formulas based on the two-SO-coupling-parameter model become those based on the one-SO-coupling-parameter model.

The Racah parameters and cubic field parameter Dq for the studied system can be obtained from its optical spectra. For NaCrS₂ crystal, from its optical spectra [15] we have

$$B \approx 440 \text{ cm}^{-1}, \quad C \approx 2080 \text{ cm}^{-1},$$

 $Dq \approx 1400 \text{ cm}^{-1}.$ (8)

For the free Cr^{3+} ion, $B_0 \approx 1030~cm^{-1}$ and $C_0 \approx 3850~cm^{-1}$ [1]; thus we have $\beta = 0.484$ for NaCrS₂. For NaCrSe₂ crystal, to our knowledge no optical spectra were reported. We estimate reasonably the optical spectra parameters as follows: According to the linear trends aiding the interpretation and prediction of optical spectra of $3d^n$ ions [16], we have

$$\frac{P(\text{NaCrS}_2)}{P(\text{NaCrSe}_2)} \approx \frac{P(\text{ZnS} : V^{2+})}{P(\text{ZnSe} : V^{2+})},$$
(9)

where P=Dq or β . Thus, from the optical spectral parameters of the isoelectronic $3d^n$ ion V^{2+} in ZnS and ZnSe [17] (note: the optical spectra of Cr^{3+} ion in ZnS and ZnSe were not reported completely), we have $Dq(ZnS:V^{2+})\approx 500~cm^{-1}$, $Dq(ZnSe:V^{2+})\approx 460~cm^{-1}$, $\beta(ZnS:V^{2+})\approx 0.65$, $\beta(ZnSe:V^{2+})\approx 0.59$. Thus, we obtain for NaCrSe₂

$$Dq \approx 1288 \text{ cm}^{-1}, \quad \beta \approx 0.439.$$
 (10)

Since the NaCrSe₂ crystal has the stronger covalence and larger metal-ligand distance than NaCrS₂, the smaller values of Dq and β in NaCrSe₂ than those in NaCrS₂ can be understood.

The group overlap integrals $S_{\rm dp}(\gamma)$ are calculated with the Slater-type SCF functions [18, 19] and the metal-ligand distance R. For NaCrS₂, $R\approx 2.44$ Å [14,15], we obtain $S_{\rm dp}({\rm e_g})\approx 0.0776$ and $S_{\rm dp}({\rm t_{2g}})\approx 0.0301$; and for NaCrSe₂, $R\approx 2.56$ Å [14], we obtain $S_{\rm dp}({\rm e_g})\approx 0.0757$ and $S_{\rm dp}({\rm t_{2g}})\approx 0.0279$.

Table 1. The molecular orbital coefficients, the SO-coupling-parameters and the orbital reduction factors in $NaCrS_2$ and $NaCrSe_2$ crystals.

	$N_{\rm t}$	$N_{ m e}$	$\lambda_{\rm t}$	$\lambda_{ m e}$	ζ (cm ⁻¹)	ζ' (cm ⁻¹)	k	<i>K'</i>
NaCrS ₂	0.7102	0.7357	0.6697	0.6819	252.0	137.1	0.8408	0.5050
NaCrSe ₂	0.6763	0.7026	0.7203	0.7307	475.7	-112.8	0.8246	0.4559

Table 2. The g factors of the Cr^{3+} ion in NaCrS₂ and NaCrSe₂ crystals.

	$g(\zeta_{\mathrm{d}})^{\mathrm{a}}$	$g(\zeta_{\rm d},\zeta_{\rm p})^{\rm b}$	g (expt.)
NaCrS ₂	1.977	1.988	1.980 [13], 1.986(1) [21], 1.988(1) [21]
NaCrSe ₂	1.977	2.011	1.997[13]

^a Calculated from the one-SO-coupling-parameter model.

Substituting the values of $S_{dp}(\gamma)$ and β into (6) and (7), the molecular orbital coefficients N_{γ} and λ_{γ} for NaCrS₂ and NaCrSe₂ can be calculated. They are shown in Table 1. Thus, from the SO-coupling-parameters $\zeta_d^0(\mathrm{Cr}^{3+}) \approx 273~\mathrm{cm}^{-1}~[1],~\zeta_p^0(\mathrm{S}^{2-}) \approx 365~\mathrm{cm}^{-1},$ $\zeta_p^0(\mathrm{Se}^{2-}) \approx 1659~\mathrm{cm}^{-1}~[20]$ and by use of (2) and (5), the SO-coupling-parameters ζ , ζ' and orbital reduction factors k, k' are calculated. They are also shown in Table 1.

Applying all these parameters to (3), the *g* factors for NaCrS₂ and NaCrSe₂ crystals were calculated. The results are compared with the experimental values in Table 2. We also have calculated the *g* factors for both crystals with the perturbation formulas based on the one-SO-coupling-parameter model for comparing them with those obtained from the two-SO-coupling-parameter model. The results are also collected in Table 2

3. Discussion

The calculated $g(\zeta_d)$ from the one-SO-coupling-parameter model for NaCrS $_2$ is close to that for NaCrS $_2$, but the calculated $g(\zeta_d,\zeta_p)$ from the two-SO-coupling-parameter model for NaCrS $_2$ is smaller than that for NaCrS $_2$. The experimental results [13] support the calculated values $g(\zeta_d,\zeta_p)$ (see Table 2), and so this model is preferable to the one-SO-coupling-parameter model. In addition, the calculated $g(\zeta_d,\zeta_p)$ for both crystals is greater than the calculated $g(\zeta_d)$.

The calculated $g(\zeta_d, \zeta_p)$ for both crystals are larger than the observed values given in [13] (see Table 2). In our opinion, the calculated $g(\zeta_d, \zeta_p)$ are more reasonable. The causes are as follows: 1) As pointed out in [13], the observed g factors in [13] have an inherent experimental error near 15% due to an inaccuracy in the assignment of the line positions. 2) NaCrS₂ and NaCrSe₂ have trigonal symmetry [14], the mean $\bar{g}[=\frac{1}{3}(g_{\parallel}+2g_{\perp})]$ is very close to the g value in cubic approximation. From the studies of EPR lineshifts caused by dipolar fields in NaCrS2, Elliston [21] obtained at room temperature $\bar{g} \approx 1.986(3)$ by subtracting the computed dipolar shifts from the observed shifts at 36 GHz. The \bar{g} value agrees with $\bar{g} \approx$ 1.988(1) determined by measuring the EPR lineshifts at 9.5 GHz, which should reduce the dipolar shifts but not the \bar{g} values. These observed \bar{g} values agree well with the calculated $g(\zeta_d, \zeta_p)$ and so the $g(\zeta_d, \zeta_p)$ for NaCrS₂ is reasonable. For the NaCrSe₂ crystal, no similar EPR lineshift experiments were reported. Considering that the calculated $\mathit{g}(\zeta_d,\zeta_p)$ for NaCrS $_2$ is larger than the observed value given in [13], for a similar NaCrSe₂ crystal, the larger calculated $g(\zeta_d, \zeta_p)$ than the observed value given in [13] can be regarded as more reasonable. This point remains to be further checked by experimental studies, in particular, the experiment of EPR lineshifts as made for CrNaS₂.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 10274054) and the Scientific Foundation of Civil Aviation Flying Institute of China.

^b Calculated from the two-SO-coupling-parameter model.

The difference $\Delta g = g(\zeta_{\rm d},\zeta_{\rm p}) - g(\zeta_{\rm d})$ is caused by the contribution from the SO-coupling-parameter of the ligands. The greater the SO-coupling-parameter of the ligands, the greater its contribution to the g factor and hence the greater the difference Δg . So, in our calculations the larger Δg and hence the larger $g(\zeta_{\rm d},\zeta_{\rm p})$ for NaCrSe₂ than those for NaCrS₂ are reasonable in physics. It appears that for 3dⁿ clusters having a large SO-coupling-parameter of ligands, the studies of the g factor should apply the two-SO-coupling-parameter model.

^[1] J.S. Griffith, The Theory of Transition-metal Ions. Cambridge University Press, London 1964.

^[2] A. Abragam and B. Bleaney, Electron Paramagnetic

Resonance of Transition Metal Ions. Oxford University Press, London 1970.

^[3] S.A. Altshuler and B.M. Kozyrev, Electron Para-

- magnetic Resonance in Compounds of Transition Elements (Translated from Russian by A. Barouch). Wiley & Sons, INC., New York 1974.
- [4] R. M. Macfarlane, J. Chem. Phys. 47, 2066 (1967).
- [5] R.M. Macfarlane, Phys. Rev. B1, 989 (1970).
- [6] G.L. Mcpherson, R.C. Koch, and G.D. Stucky, J. Chem. Phys. 60, 1424 (1974).
- [7] M. L. Du and C. Rudowicz, Phys. Rev. B46, 8974 (1992).
- [8] M. L. Du, Phys. Rev. B46, 5274 (1992).
- [9] J. J. Chen, M. L. Du, and K. S. Chen, Phys. Status Solidi B170, 211 (1992).
- [10] W. C. Zheng and S. Y. Wu, Phys. Status Solidi B207, 429 (1998).
- [11] W. C. Zheng, S. Y. Wu, B. J. Zhou, and S. F. Zhu, Physica B269, 319 (1999).
- [12] W. C. Zheng, S. Y. Wu, and W. Li, Physica B253, 79 (1998).

- [13] M. Krygowska-Doniec, Acta Phys. Polonica A54, 441(1978).
- [14] F.M.R. Engelsman, G.A. Wiegers, F. Jellinek, and V. Laar, J. Solid State Chem. 6, 574 (1973).
- [15] S. L. Holt and A. Wold, Inorg. Chem. 6, 1594 (1967).
- [16] K. H. Karisson and T. Perander, Chem. Scr. 3, 201 (1973).
- [17] L. M. Hoano and J. M. Baranowski, Phys. Status Solidi B84, 361 (1977).
- [18] E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963).
- [19] E. Clementi, D. L. Raimondi, and W. P. Reinhardt, J. Chem. Phys. 47, 1300 (1967).
- [20] S. Fraga, K. M. S. Saxena, and J. Karwowski, Handbook of Atomic Data. Elsevier Press, New York 1970.
- [21] P. R. Elliston, J. Phys. C7, 425 (1974).